\square

B. TECH
 (SEM IV) THEORY EXAMINATION 2019-20 DISCRETE MATHEMATICS

Time: 3 Hours
Note1.AttemaltSectiohfsequiareymis sidgtatheahooselitably.
SECTIOAN

1. Attemqltquestiontsicif.

$2 \times 10=20$

a.	Let $\mathrm{R}=1,1,2,1,3,2$, compute R.
b.	Distinguish between $\emptyset, \varnothing, 0,0$.
c.	What type of sentence is $5+\mathrm{x}=9$? For what value of x it will become a true statement.
d.	Define the Disjunction terms with appropriate truth table.
e.	How many ways are there to arrange the eight letters in the word CALCUTTA?
f.	In how many ways can 12 students be arranged in a circle?
g.	Define the Recursively Defined function.
h.	Find the Generating function of the following series b,b,b,b,b,b,b.
i.	Draw all simple graphs of one, two, three and four vertices.
j.	Define Planar graph.

SECTION B

2. Attempt any three of the following: $10 \times 3=30$

a.	For the set $I=0,1,2,3 \quad$, show that the modulo 4 system is a field.
b.	Obtain the principal conjunctive normal form (I) $p \wedge q$ using truth table (II) $\sim p \Rightarrow r \wedge q \Leftrightarrow p \quad$ without using truth table.
c.	A committee of 5 is to be formed out of 6 gents and 4 ladies. In how many ways this can be done when (I) at least 2 ladies are included (ii) at most 2 ladies are included.
d.	Solve the recurrence relation $a-a \quad-2 a=n$.
e.	Find the number of perfect matching in the complete bipartite graph $k,$.

SECTION C

3. Attempt any one parto the following:

10x1=10

a.	Let $R=1,2,2,2,3,1$ and $A=1,2,3$,find the reflexive ,symmetric and transitive closure of R, usin
b.	Prove that the Composition of relation R (II) Composition of matrix relation R.

$\begin{array}{lll}\text { 4. Attempt ans one part of the following: } & 10 \times 1=10\end{array}$

a.	Define quantifiers, universal quantifiers and existential quantifiers by giving an example.
b.	Prove by mathematical induction that $6+7 \quad$ is divisible by 43 for each positive integer n
5.	Attempt any one part of the following: $\mathbf{1 0 x 1 = 1 0}$
a.	How many integer solutions are there to the equations: $+x+x+x \quad=13,0 \leq x \leq$ 5 where $i=1,2,3,4$.
b.	State and prove pigeonhole principle.

6. Attempt any one part of the following:

10x1=10

| a. | Solve the recurrence relation $a \quad-2 a \quad+a=2$
 function with initial conditions $a=2$ and $a=1$. | | |
| :--- | :--- | :--- | :--- | :--- |
| b. | Solve the recurrence relation a
 -- | $+2 a$ | $-15 a=6 n+10$, given that $a=1, a=$ |

7. Attempt any one part of the following:

10x1=10

a.	$\begin{array}{l}\text { A tree has two vertices of degree } 2, \text { one vertex of degree } 3 \text { and three vertices of degree } \\ \text { 4.How many vertices of degree } 1 \text { does it have? }\end{array}$
b.	Prove that the maximum number of vertices on level n of a binary tree is 2 where $n \geq 0$.

